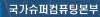


Supercomputing Everywhere Connected!

WORKSHOP Machine Learning in HEP

SND@LHC: Scattering and Neutrino Detector at LHC

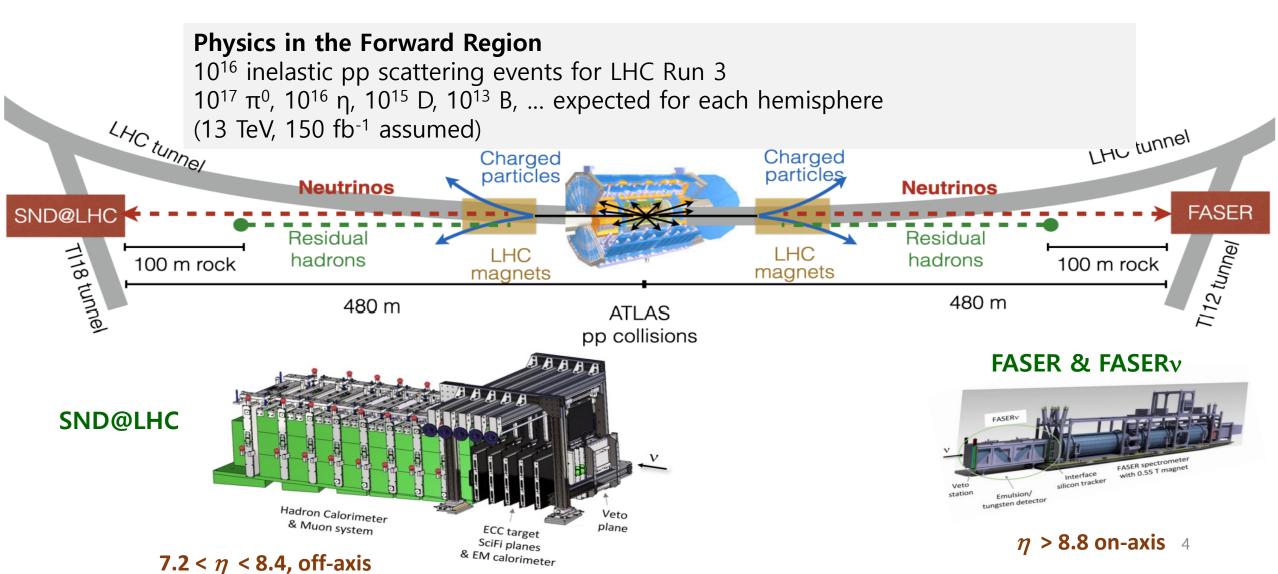
Kang Young Lee


GNU

On behalf of K-SND Group

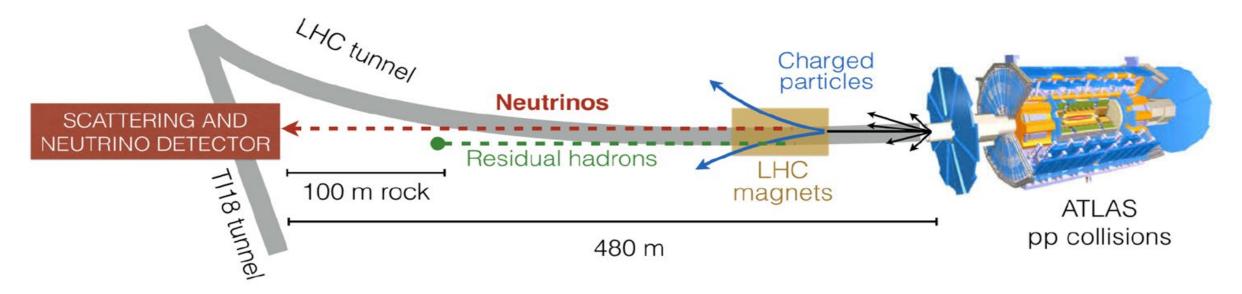
Outline

- Introduction
- II. SND@LHC Experiment
- III. Analyses & Results
- IV. Conclusion

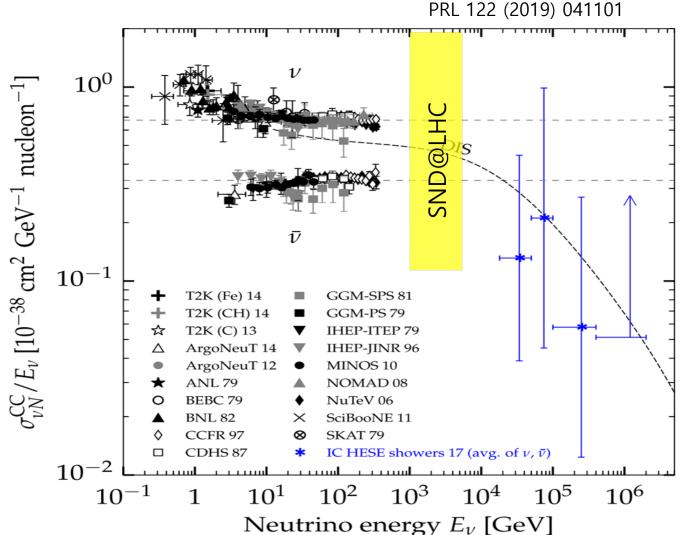


Introduction

Forward Experiments at the LHC



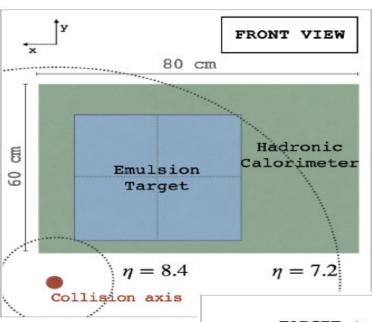
The SND@LHC



- 480 m away from the ATLAS interaction point (IP1)
- Located in the TI18 tunnel, former positron transfer line to LEP
- Shielded by 100 m rock
- LHC magnet deflects charged particles
- Neutrinos and (if exist) feebly interacting particles (FIPs) arrive at the detector

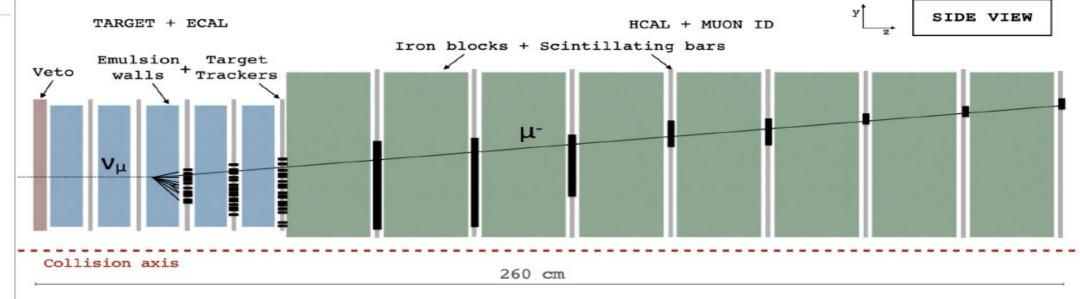
The LHC neutrinos are interesting because...

- First observation of the collider neutrinos
- High energy neutrinos of not explored region,
 - 300 GeV ~ a few TeV
- Large fluxes in the forward region
- All the 3 flavour neutrinos can be observed.



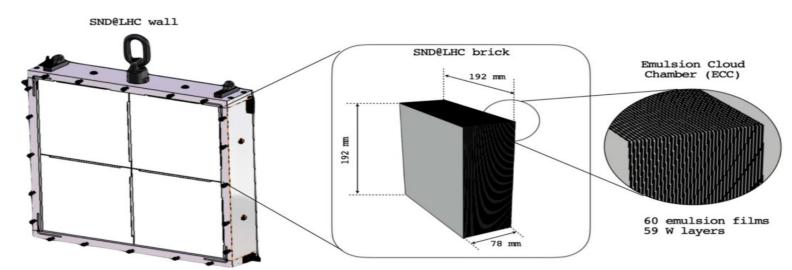
SND@LHC

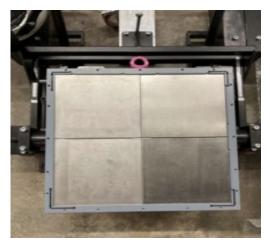
The SND@LHC Detector

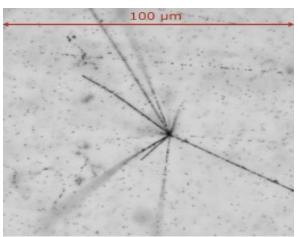


Hybrid detector optimised for the identification of all three neutrino flavours and the FIPs

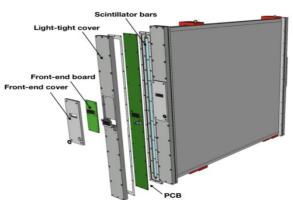
- Veto plane
- Vertex detector and EM calorimeter (~40 X₀): ECC and SciFi
- Hadron calorimeter and muon system ($\sim 10 \lambda$)


Detector paper: arXiv 2210.02784 to appear on JINST





Emulsion Cloud Chamber


Emulsion target

- Emulsion cloud chamber (ECC) brick consists of 60 emulsion films interleaved with 59 tungsten plates
- Total tungsten mass 830 kg
- 5 walls x 4 bricks x 60 emulsion films
- Replaced every 20 fb⁻¹

Other Detector Components

Veto system

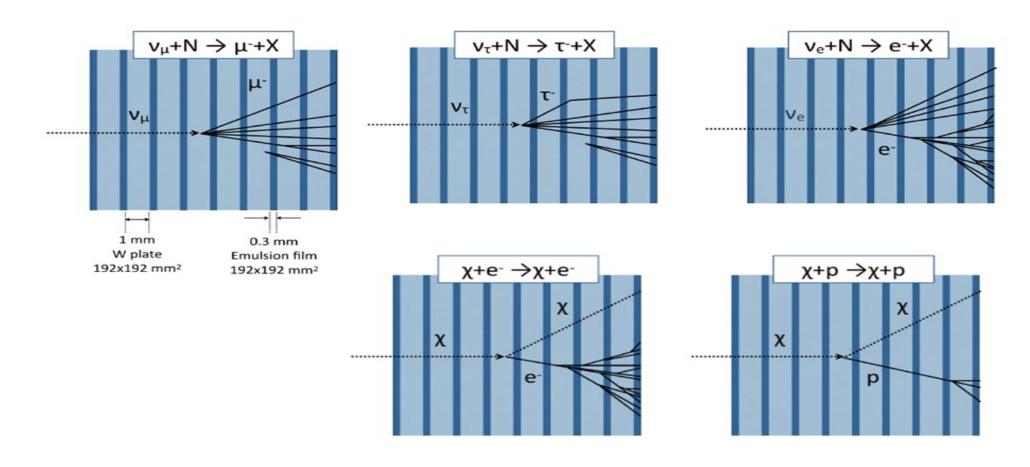
- Tags incoming charged particles and consists of 2 planes with 7 Sci bars

SciFi detector

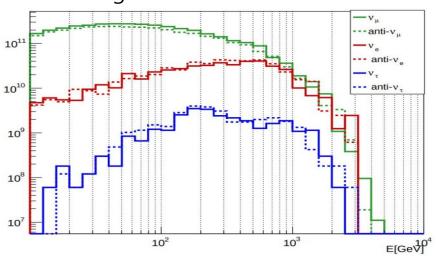
- Scintillating Fiber detectors interface emulsion with electronic detectors for position prediction and timing of outgoing particles.
- Electromagnetic calorimetry

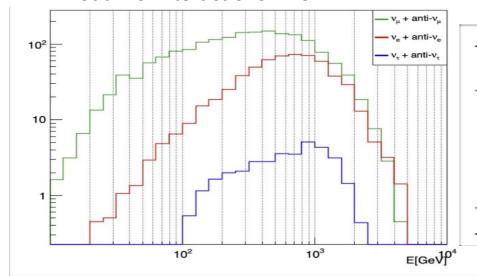
Hadronic calorimeter and muon system

- Upstream : 5 stations of Fe blocks with 10 Sci bars for hadronic calorimetry
- Downstream : 3 stations with 60 horizontal and 60 vertical Sci bars for muon tagging


Physics Cases

- Measurement of the ν production cross section
- Measurement of the forward charm production
- Neutrino induced charm production
- Lepton flavor universality test in neutrino interactions
- Measurement of the NC/CC ratio
- Direct search for FIP through their scattering


Identification of all three neutrino flavours and FIPs by event topologies in the ECC brick



Physics Cases – Neutrino Production

Incoming Neutrinos to SND

Neutrino interactions in SND

Measurement of $\sigma(pp \rightarrow \nu X)$

$$\circ$$
 $v_{\mu} + \overline{v_{\mu}}$ charged-current: 1447

- \circ $v_e + \overline{v_e}$ charged-current: 450
- \circ $v_{+}+\overline{v_{+}}$ charged-current: 34

Estimated from 290 fb⁻¹ in LHC Run 3 Angular acceptance $7.2 < \eta < 8.4$

	Neutrinos i	n acceptance	CC neutrino interactions		NC neutrino interactions			
Flavour	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield	$\langle E \rangle [GeV]$	Yield		
$ u_{\mu}$	120	3.4×10^{12}	450	1028	480	310		
$egin{aligned} u_{\mu} \end{aligned}$	125	3.0×10^{12}	480	419	480	157		
$ u_e$	300	4.0×10^{11}	760	292	720	88		
$ar{ u}_e$	230	4.4×10^{11}	680	158	720	58		
$ u_{ au}$	400	2.8×10^{10}	740	23	740	8		
$ar{ u}_{ au}$	380	3.1×10^{10}	740	11	740	5		
TOT		7.3×10^{12}		1930		625		
W W 1								

Kang Young Lee

13

Timeline

^	→ +h	2020		c	
Aua.	2/ ¹¹¹ ,	2020	Letter	OŤ	Intent

Jan. 22nd, 2021 Technical Proposal

March, 2021 Approval by CERN RB

August, 2021 Infrastructure

Oct.13th, 2021 Detector construction completion

December, 2021 Detector installation in TI18

Apr. 7th, 2022 Installation of the first emulsion films

July, 5th, 2022 First 13.6 TeV collisions

July, 26th, 2022 Full target installation

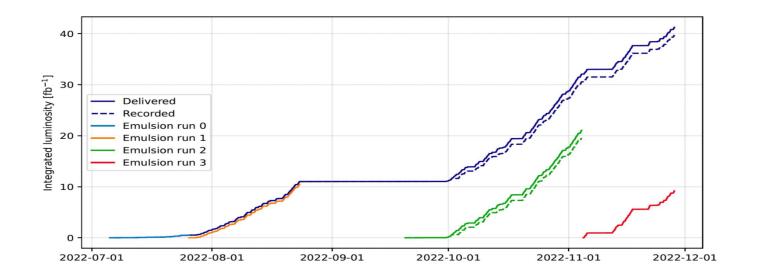
Scattering and Neutrino Detector at the LHC

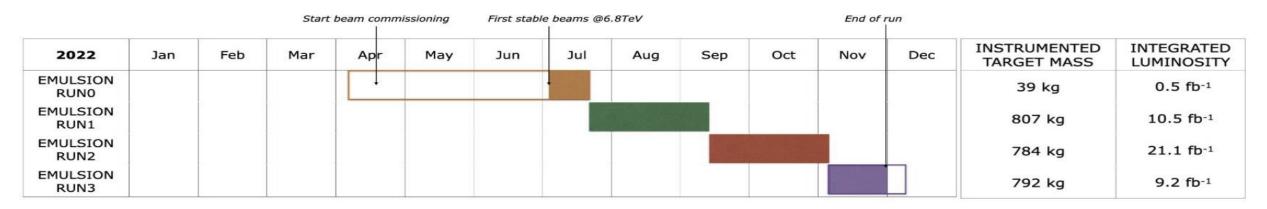
Letter of Intent

TECHNICAL PROPOSAL

SND@LHC

Analyses & Results

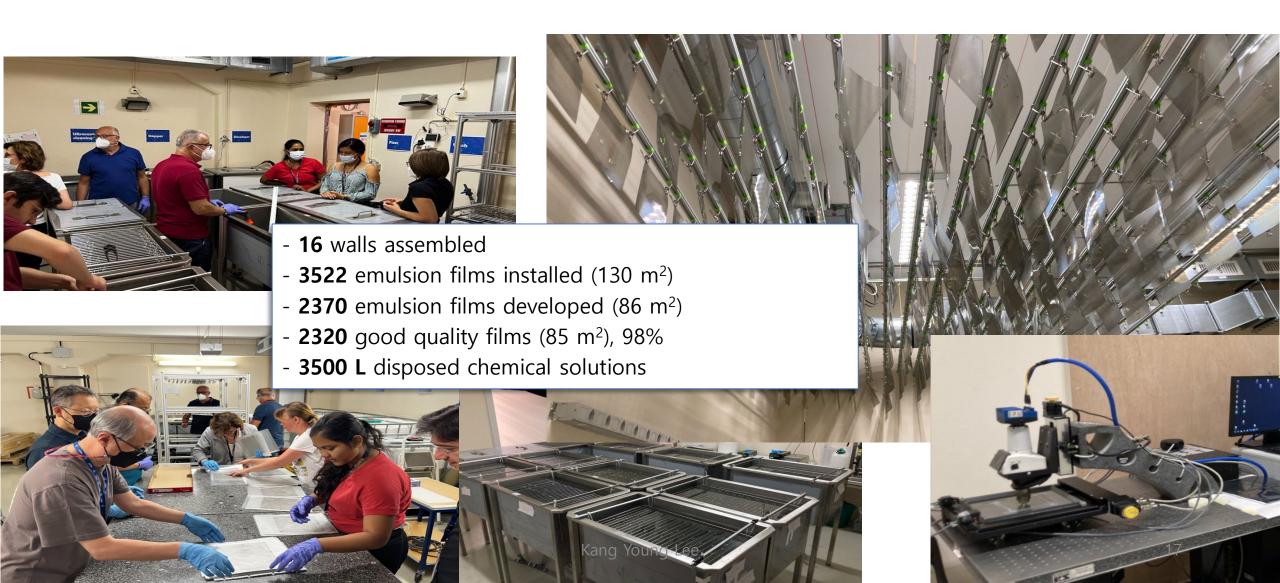


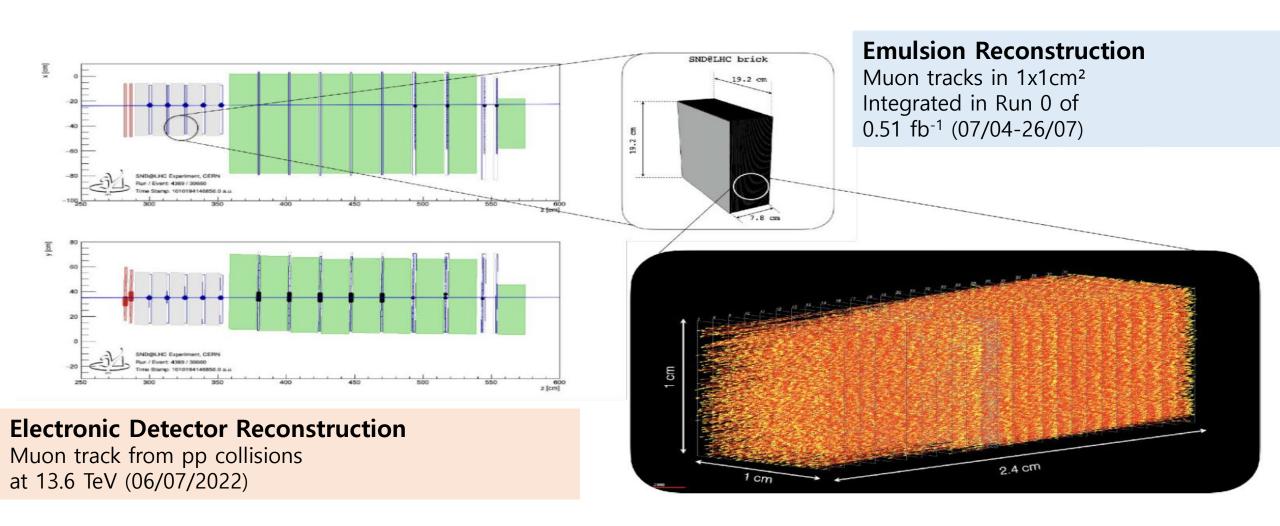


Data taking in 2022

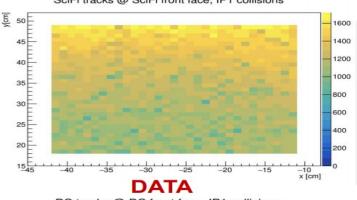
Run3 in 2022

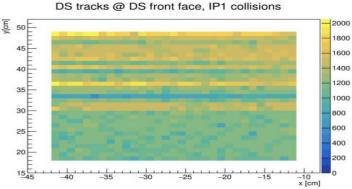
41.25 fb⁻¹ delivered 39.74 fb⁻¹ recorded (96%)

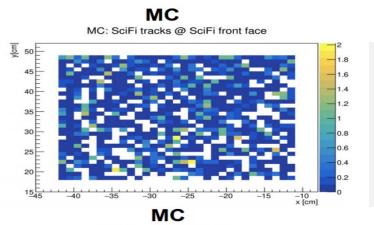



Emulsion Development & Scanning

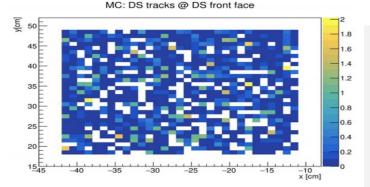
Muon Track Reconstruction




Data/MC Comparison


Measured muon track rate in SciFi $(31x31 \text{ cm}^2)$:

 $(1.60\pm0.01_{stat})x10^4$ fb/cm²


Measured muon track rate in Muon system (31x31 cm²):

 $(1.67\pm0.01_{stat})x10^4$ fb/cm²

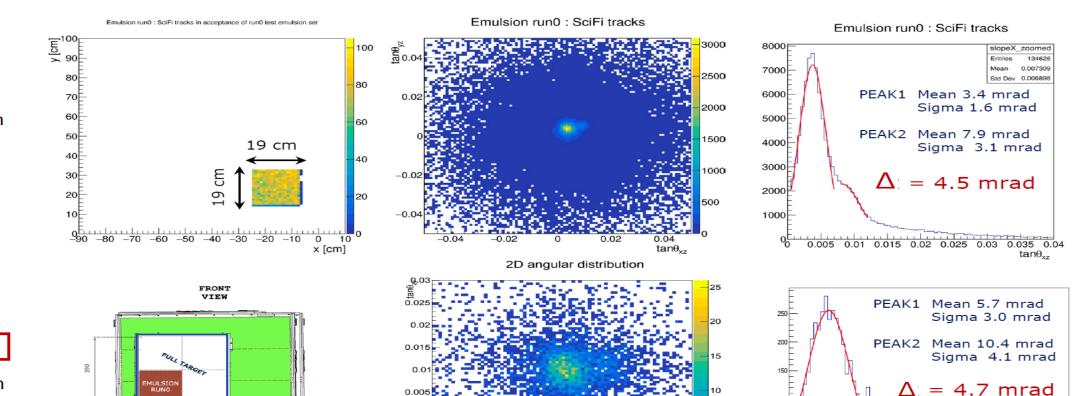
Expected muon track rate in SciFi $(31x31 \text{ cm}^2)$:

 $(1.57\pm0.10_{stat})x10^4$ fb/cm²

Expected muon track rate in Muon system (31x31 cm²):

 $(1.59\pm0.10_{stat})x10^4$ fb/cm²

Muon flux from FLUKA F. Cerutti, M.S. Gilarte CERN-SY/STI

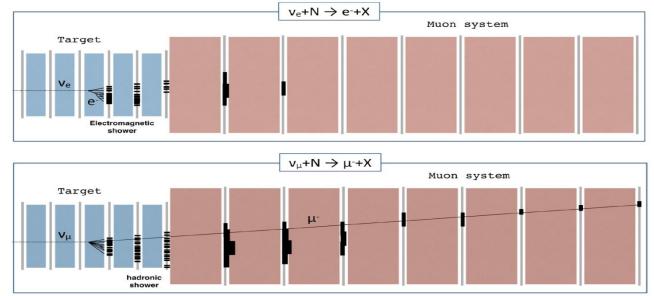

SciFi/Emulsion Comparison

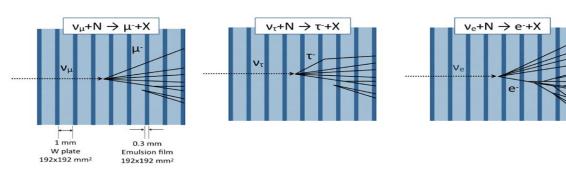
SciFi

Measured rates on BRICK1 surface 1.6x10⁴ fb/cm²

EMULSIONS

Measured rates in BRICK1
1.5x10⁴ fb/cm²

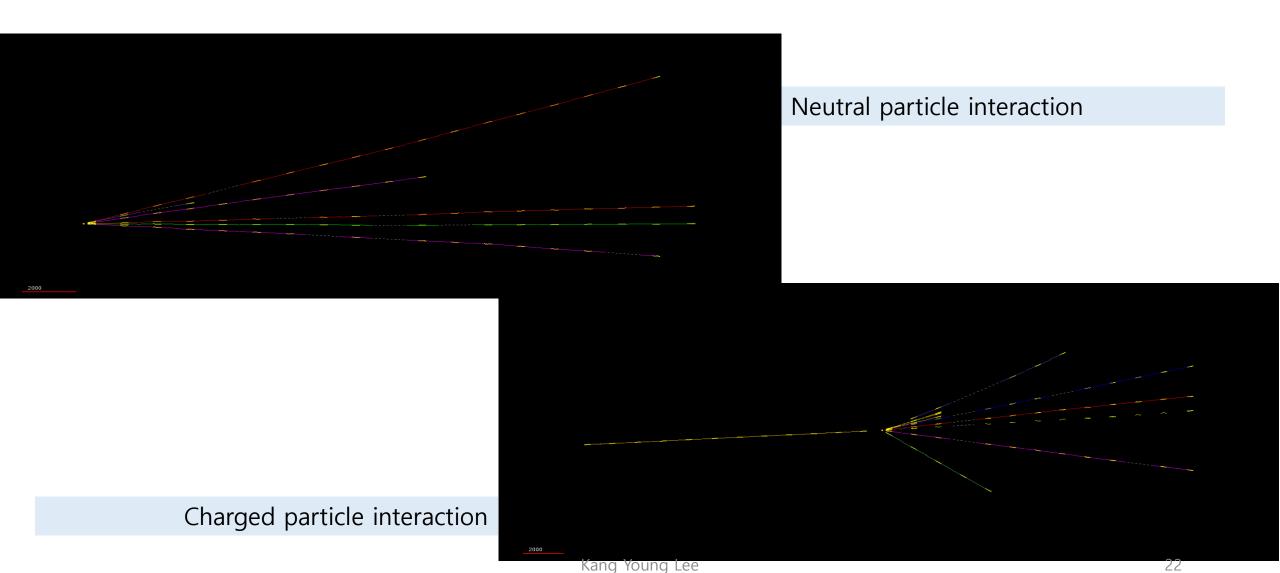

Neutrino Identification Strategy


First Stage

- Identify the neutrino candidates in electronic detector data
- Tag muons in the muon system
- Measure electronic and hadronic energies in calorimeters

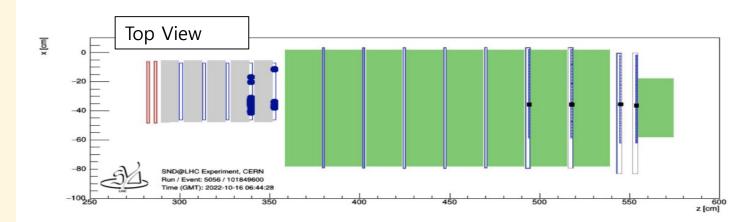
Second Stage

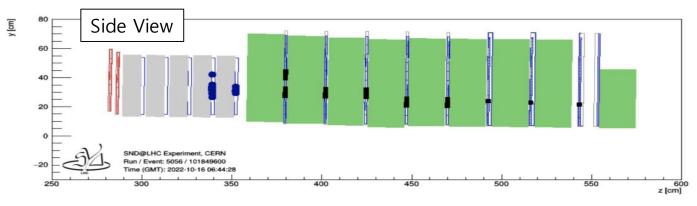
- Identify the neutrino candidates in emulsion data
- Tag electromagnetic showers
- Match events to electronic detector data
- Identify neutrinos of all flavours!



Vertex Reconstruction in Emulsion

Neutrino Identification with Electronic Detectors

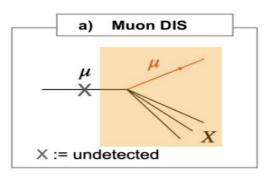

Neutrino selection criteria for electronic detectors

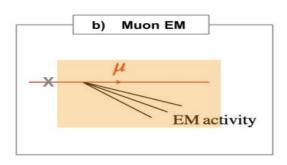

► Fiducial volume cuts

- Require an event from a neutral vertex, located in the 3rd or 4th wall
- Select fiducial cross-sectional area to reject entering backgrounds

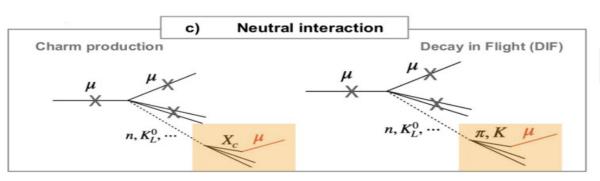
▶ Neutrino ID cuts

- Require large EM activity in SciFi and hadronic activity in the HCAL
- Require timing for event produced upstream
- Muon reconstructed and isolated in the muon system





Background Estimation



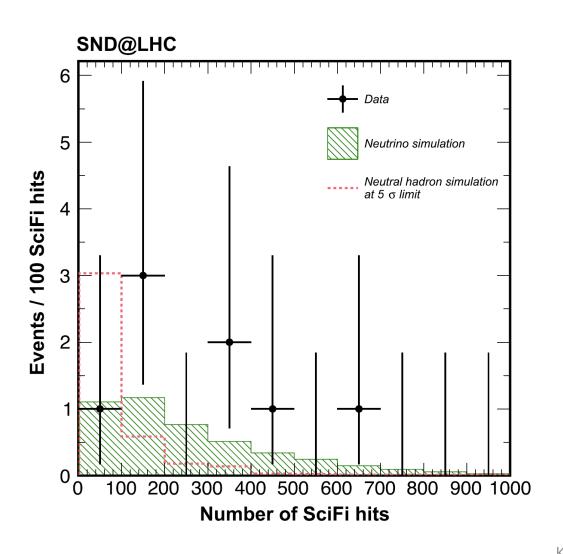
Muon induced DIS and EM backgrounds Number of undetected muons entering the target

:= within SND@LHC acceptance

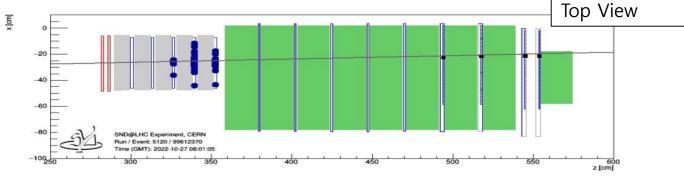
$$N_u^{bkg} = N_u \times (1 - \epsilon_{Veto}) \times (1 - \epsilon_{SciFi1}) \times (1 - \epsilon_{SciFi2}) \sim 10^{-2}$$

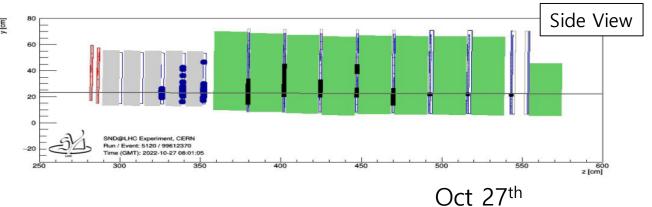
SND@LHC PRELIMINARY

Muon induced neutral interaction backgrounds


$$N_{\rm neutrals}^{\rm bkg} = N_{\rm neutrals} \times P_{\rm inel} \times \epsilon_{\rm sel} \sim 0.2$$

Systematic uncertainty study is ongoing.


Observed Neutrino Candidates



$8 \nu_{\mu}$ CC candidates observed

- (4.2 expected)
- 0.2 background yields estimated

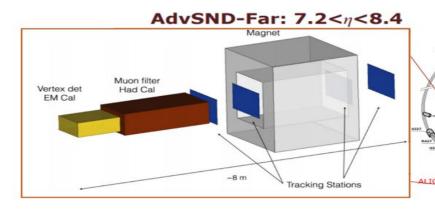
Paper Released

PHYSICAL REVIEW LETTERS **131**, 031802 (2023)

Editors' Suggestion

Observation of Collider Muon Neutrinos with the SND@LHC Experiment

```
R. Albanese<sup>©</sup>, <sup>1,2</sup> A. Alexandrov<sup>©</sup>, <sup>1</sup> F. Alicante<sup>©</sup>, <sup>1,2</sup> A. Anokhina<sup>©</sup>, <sup>3</sup> T. Asada<sup>©</sup>, <sup>1,2</sup> C. Battilana<sup>©</sup>, <sup>4,5</sup> A. Bay<sup>©</sup>, <sup>6</sup>
         C. Betancourt, R. Biswas, A. Blanco Castro, M. Bogomilov, D. Bonacorsi, V. W. M. Bonivento, 1
 P. Bordalo<sup>®</sup>, A. Boyarsky<sup>®</sup>, <sup>12,13</sup> S. Buontempo<sup>®</sup>, M. Campanelli<sup>®</sup>, <sup>14</sup> T. Camporesi<sup>®</sup>, V. Canale<sup>®</sup>, <sup>1,2</sup> A. Castro<sup>®</sup>, <sup>4,5</sup>
       D. Centanni<sup>®</sup>, <sup>1,15</sup> F. Cerutti<sup>®</sup>, <sup>8</sup> M. Chernyavskiy<sup>®</sup>, <sup>3</sup> K.-Y. Choi<sup>®</sup>, <sup>16</sup> S. Cholak<sup>®</sup>, <sup>6</sup> F. Cindolo<sup>®</sup>, <sup>4</sup> M. Climescu<sup>®</sup>, <sup>17</sup>
        A. P. Conaboy<sup>®</sup>, <sup>18</sup> G. M. Dallavalle<sup>®</sup>, <sup>4</sup> D. Davino<sup>®</sup>, <sup>1,19</sup> P. T. de Bryas<sup>®</sup>, <sup>6</sup> G. De Lellis<sup>®</sup>, <sup>1,2</sup> M. De Magistris<sup>®</sup>, <sup>1,15</sup>
A. De Roeck<sup>®</sup>, A. De Rújula<sup>®</sup>, M. De Serio<sup>®</sup>, <sup>20,21</sup> D. De Simone<sup>®</sup>, A. Di Crescenzo<sup>®</sup>, <sup>1,2</sup> R. Donà<sup>®</sup>, <sup>4,5</sup> O. Durhan<sup>®</sup>, <sup>22</sup>
F. Fabbri<sup>©</sup>, F. Fedotovs<sup>©</sup>, M. Ferrillo<sup>©</sup>, M. Ferro-Luzzi<sup>©</sup>, R. A. Fini<sup>©</sup>, A. Fiorillo<sup>©</sup>, R. Fresa<sup>©</sup>, Fresa<sup>©</sup>, L. Fresa<sup>©</sup>, L. Fresa<sup>©</sup>, L. Fresa<sup>©</sup>, R. Fresa<sup>©</sup>, L. 
                 F. M. Garay Walls, A. Golovatiuk, A. Golovatiuk, E. A. Golutvin, E. E. Graverini, A. M. Guler, 2 V. Guliaeva, 3
G. J. Haefeli<sup>©</sup>, J. C. Helo Herrera<sup>©</sup>, <sup>26,27</sup> E. van Herwijnen<sup>©</sup>, <sup>25</sup> P. Iengo<sup>©</sup>, <sup>1</sup> S. Ilieva<sup>©</sup>, <sup>1,2,10</sup> A. Infantino<sup>©</sup>, <sup>8</sup> A. Iuliano<sup>©</sup>, <sup>1,2</sup>
               R. Jacobsson<sup>®</sup>, C. Kamiscioglu<sup>®</sup>, <sup>22,28</sup> A. M. Kauniskangas<sup>®</sup>, E. Khalikov<sup>®</sup>, S. H. Kim<sup>®</sup>, <sup>29</sup> Y. G. Kim<sup>®</sup>, <sup>30</sup>
      G. Klioutchnikov<sup>®</sup>, M. Komatsu<sup>®</sup>, In. Konovalova<sup>®</sup>, S. Kovalenko<sup>®</sup>, S. Kuleshov<sup>®</sup>, S. Kuleshov<sup>®</sup>, H. M. Lacker<sup>®</sup>, Is.
  O. Lantwin, F. Lasagni Manghi, A. Lauria, K. Y. Lee, K. Y. Lee, X. S. Lee, S. Lo Meo, V. P. Loschiavo, 1,19
                   S. Marcellini<sup>©</sup>, A. Margiotta<sup>©</sup>, A. Mascellani<sup>©</sup>, A. Miano<sup>©</sup>, A. Mikulenko<sup>©</sup>, M. C. Montesi<sup>©</sup>, 1,2
      F. L. Navarria, 4,5 S. Ogawa, 4,5 S. Ogawa, N. Okateva, M. Ovchynnikov, 12 G. Paggi, 4,5 B. D. Park, 29 A. Pastore, 20
         A. Perrotta<sup>0</sup>, D. Podgrudkov<sup>0</sup>, N. Polukhina<sup>0</sup>, A. Prota<sup>0</sup>, A. Quercia<sup>0</sup>, S. Ramos<sup>0</sup>, A. Reghunath<sup>0</sup>, Reghunath<sup>1</sup>
   T. Roganova<sup>®</sup>, F. Ronchetti<sup>®</sup>, T. Rovelli<sup>®</sup>, A. O. Ruchayskiy<sup>®</sup>, T. Ruf<sup>®</sup>, M. Sabate Gilarte<sup>®</sup>, M. Samoilov<sup>®</sup>,
V. Scalera, <sup>1,15</sup> O. Schneider, <sup>6</sup> G. Sekhniaidze, <sup>1</sup> N. Serra, <sup>7</sup> M. Shaposhnikov, <sup>6</sup> V. Shevchenko, <sup>3</sup> T. Shchedrina, <sup>3</sup>
L. Shchutska<sup>®</sup>, <sup>6</sup> H. Shibuya<sup>®</sup>, <sup>34,36,†</sup> S. Simone<sup>®</sup>, <sup>20,21</sup> G. P. Siroli<sup>®</sup>, <sup>4,5</sup> G. Sirri<sup>®</sup>, <sup>4</sup> G. Soares<sup>®</sup>, <sup>9</sup> O. J. Soto Sandoval<sup>®</sup>, <sup>26,27</sup>
                 M. Spurio, <sup>4,5</sup> N. Starkov, <sup>3</sup> I. Timiryasov, <sup>35</sup> V. Tioukov, <sup>1</sup> F. Tramontano, <sup>1</sup> C. Tripplo, <sup>6</sup> E. Ursov, <sup>3</sup>
          A. Ustyuzhanin<sup>©</sup>, <sup>1,36</sup> G. Vankova-Kirilova<sup>©</sup>, <sup>10</sup> V. Verguilov<sup>©</sup>, <sup>10</sup> N. Viegas Guerreiro Leonardo<sup>©</sup>, <sup>9</sup> C. Vilela<sup>©</sup>, <sup>9,*</sup>
      C. Visone, <sup>1,2</sup> R. Wanke, <sup>17</sup> E. Yaman, <sup>22</sup> C. Yazici, <sup>22</sup> C. S. Yoon, <sup>29</sup> E. Zaffaroni, <sup>6</sup> and J. Zamora Saa, <sup>26,32</sup>
```



Beyond Run 3

Kang Young Lee

Advanced SND@LHC

- Future project at HL-LHC era
- Upgrade of SND@LHC during LS 4
- Extension of the physics case
- New technologies and detector layout
- Two detectors: AdvSND-Far (7.2 < η < 8.4) Possible location: Forward Physics Facility AdvSND-Near $(4 < \eta < 5)$ Possible locations: Existing caverns close to IP

Conclusion

- SND@LHC starts running to perform measurements of ν and search for FIP in the forward region of the LHC.
- SND@LHC collected 39 fb⁻¹ data at the LHC Run 3.
- Measurement of muon flux with emulsions and electronic detectors shows good agreements with MC calculation.
- 8 ν_{μ} CC candidates are identified with the electronic detectors while the estimated backgrounds are 0.2. Systematic uncertainty is under evaluation to expect significance ~5 σ .
- Emulsion scanning & analysis is ongoing. Stay tuned!

Thank you!

Backup Slides

Observed Neutrino Candidates

